Convert PySpark DataFrame Column from String to Int Type (5 Examples)

In this tutorial, I’ll explain how to convert a PySpark DataFrame column from String to Integer Type in the Python programming language.

The table of content is structured as follows:

  • Introduction
  • Creating Example Data
  • Example 1: Using int Keyword
  • Example 2: Using IntegerType() Method
  • Example 3: Using select() Function
  • Example 4: Using selectExpr() Method
  • Example 5: Using SQL
  • Video, Further Resources & Summary

Fasten your seatbelt so we can start!

Introduction

PySpark is an open-source software that is used to store and process data by using the Python Programming language.

We can generate a PySpark object by using a Spark session and specify the app name by using the getorcreate() method.

SparkSession.builder.appName(app_name).getOrCreate()

After the data set with a list of dictionaries is created, we have to pass the data to the createDataFrame() method. Now we have created a PySpark DataFrame.

spark.createDataFrame(data)

After that we can display the DataFrame by using the show() method as you can see below:

dataframe.show()

Now we are ready for creating our example data.

Creating Example Data

In this example, we are going to create a DataFrame from a list of dictionaries with eight rows and three columns, containing fruits and city details. To display the DataFrame we are using the show() method:

# import the pyspark module
import pyspark
 
# import the sparksession from pyspark.sql module
from pyspark.sql import SparkSession
 
# creating sparksession and then give the app name
spark = SparkSession.builder.appName('statistics_globe').getOrCreate()
 
#create a dictionary with 3 pairs with 8 values each
#inside a list
data = [{'fruit': 'apple', 'cost': '67.89', 'city': 'patna'},
        {'fruit': 'mango', 'cost': '87.67', 'city': 'delhi'},
        {'fruit': 'apple', 'cost': '64.76', 'city': 'harayana'},
        {'fruit': 'banana', 'cost': '87.00', 'city': 'hyderabad'},
        {'fruit': 'guava', 'cost': '69.56', 'city': 'delhi'},
        {'fruit': 'mango', 'cost': '234.67', 'city': 'patna'},
        {'fruit': 'apple', 'cost': '143.00', 'city': 'delhi'},
        {'fruit': 'mango', 'cost': '49.0', 'city': 'banglore'}]
 
 
# creating a dataframe from the given list of dictionary
dataframe = spark.createDataFrame(data)
 
# display the final dataframe
dataframe.show()

change String to Int Type Table 1

The previously shown table includes our example DataFrame. As you can see, it contains three columns that are called city, cost and fruit with string data types.

Let’s convert the string type of the cost column to an integer data type.

Example 1: Using int Keyword

This example uses the int keyword with the cast() function and converts the string type into int.

We can display the DataFrame columns by using the printSchema() method.

dataframe.withColumn("column_name",dataframe.cost.cast('int')).printSchema()

In this example, we are converting the cost column in our DataFrame from string type to int:

 
 
#convert the city column data type into integer using int keyword
dataframe.withColumn("cost",dataframe.cost.cast('int')).printSchema()

change String to Int Type Table 2

Example 2: Using IntegerType() Method

This example uses the IntegerType() method imported from pyspark.sql.functions with the cast() function and converts the string type into integer.

After that, we can display the DataFrame columns by using the printSchema() method:

#import IntegerType method
from pyspark.sql.types import IntegerType
 
#convert string to Integer for cost column
dataframe.withColumn("cost",dataframe.cost.cast(IntegerType())).printSchema()

change String to Int Type Table 2

Example 3: Using select() Function

This example uses the select() function with the col() method imported from pyspark.sql.functions by cast() function and converts the string type into integer.
After that, we can display the DataFrame columns by using the printSchema() method:

dataframe.select(col("column_name").cast('int').alias("column_name")).printSchema()

In this example, we are converting the cost column in DataFrame from string type to integer:

#import col
from pyspark.sql.functions import col
# Use select function to convert cost column data type to Integer
dataframe.select(col("cost").cast('int').alias("cost")).printSchema()

change String to Int Type Table 3

Example 4: Using selectExpr() Method

This example uses the selectExpr() function with a keyword and converts the string type into integer.

dataframe.selectExpr("column_name","cast(column_name as int) column_name")

In this example, we are converting the cost column in our DataFrame from string type to integer.

# use select expression to convert string to Integer  type of cost column
dataframe.selectExpr("city","cast(cost as int) cost")

change String to Int Type Table 4

Example 5: Using SQL

This example uses a SQL query to convert a string to an integer type with:

spark.sql("SELECT INT(column_name) as column_name from view_name")

In this example we are converting the cost column in our DataFrame from string type to integer:

 
#create view
dataframe.createOrReplaceTempView("data")
 
# use sql function to convert string to integer data type of cost column
spark.sql("SELECT INT(cost) as cost from data")

change String to Int Type Table 5

Video, Further Resources & Summary

Do you need more explanations on how to convert a PySpark DataFrame column from string to int data type, then you may have a look at the following YouTube video of the DecisionForest YouTube channel.

YouTube

By loading the video, you agree to YouTube’s privacy policy.
Learn more

Load video

Furthermore, you may have a look at some other tutorials on the Data Hacks website:

Summary: This post has illustrated how to switch from string to int type in a PySpark DataFrame in the Python programming language. In case you have any additional questions, you may leave a comment below.

This article was written in collaboration with Gottumukkala Sravan Kumar. You may find more information about Gottumukkala Sravan Kumar and his other articles on his profile page.

Leave a Reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.
You need to agree with the terms to proceed

Menu
Top