Convert Integer Column to String Data Type in pandas DataFrame in Python (3 Examples)

In this Python programming tutorial you’ll learn how to convert an integer column to the string data type in a pandas DataFrame.

Introduction of Example Data

import pandas as pd                         # Import pandas
df = pd.DataFrame({'A':[7, 2, 12, 9, 7],    # Constructing a pandas DataFrame
                   'B':[10, 9, 4, 22, 25],
                   'C':[35, 4, 42, 7, 13]})
print(df)
#     A   B   C
# 0   7  10  35
# 1   2   9   4
# 2  12   4  42
# 3   9  22   7
# 4   7  25  13
print(df.dtypes)                            # Printing the data types of all columns
# A    int64
# B    int64
# C    int64
# dtype: object

Example 1: Transforming One Column of a pandas DataFrame from Integer to String

df1 = df.copy()                             # Duplicate pandas DataFrame
df1['A'] = df1['A'].astype(str)             # Converting integer to string
print(df1.dtypes)                           # Printing the data types of all columns
# A    object
# B     int64
# C     int64
# dtype: object

Example 2: Transforming Multiple Columns of a pandas DataFrame from Integer to String

df2 = df.copy()                             # Duplicate pandas DataFrame
df2 = df2.astype({'A': str, 'C': str})      # Converting integer to string
print(df2.dtypes)                           # Printing the data types of all columns
# A    object
# B     int64
# C    object
# dtype: object

Example 3: Transforming Each Column of a pandas DataFrame from Integer to String

df3 = df.copy()                             # Duplicate pandas DataFrame
df3 = df3.astype(str)                       # Converting integer to string
print(df3.dtypes)                           # Printing the data types of all columns
# A    object
# B    object
# C    object
# dtype: object

Further Resources & Related Tutorials

Furthermore, you might want to have a look at the related Python articles on my homepage:

Leave a Reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.
You need to agree with the terms to proceed

Menu
Top