R Drawing Predicted vs. Observed Values in ggplot2 Plot (Example Code)
In this article, I’ll illustrate how to draw a plot of predicted vs. observed values in R programming.
Creation of Example Data
data(iris) # Load example data head(iris) # Sepal.Length Sepal.Width Petal.Length Petal.Width Species # 1 5.1 3.5 1.4 0.2 setosa # 2 4.9 3.0 1.4 0.2 setosa # 3 4.7 3.2 1.3 0.2 setosa # 4 4.6 3.1 1.5 0.2 setosa # 5 5.0 3.6 1.4 0.2 setosa # 6 5.4 3.9 1.7 0.4 setosa |
data(iris) # Load example data head(iris) # Sepal.Length Sepal.Width Petal.Length Petal.Width Species # 1 5.1 3.5 1.4 0.2 setosa # 2 4.9 3.0 1.4 0.2 setosa # 3 4.7 3.2 1.3 0.2 setosa # 4 4.6 3.1 1.5 0.2 setosa # 5 5.0 3.6 1.4 0.2 setosa # 6 5.4 3.9 1.7 0.4 setosa
Example: Plotting Predicted vs. Observed Values Using the ggplot2 Package
iris_mod <- lm(Sepal.Length ~ ., iris) # Estimating linear regression |
iris_mod <- lm(Sepal.Length ~ ., iris) # Estimating linear regression
install.packages("ggplot2") # Install ggplot2 package library("ggplot2") # Load ggplot2 |
install.packages("ggplot2") # Install ggplot2 package library("ggplot2") # Load ggplot2
iris_pred <- data.frame(Pred_Values = predict(iris_mod), # Creating new data Obs_Values = iris$Sepal.Length) |
iris_pred <- data.frame(Pred_Values = predict(iris_mod), # Creating new data Obs_Values = iris$Sepal.Length)
ggplot(iris_pred, # Drawing plot using ggplot2 aes(x = Pred_Values, y = Obs_Values)) + geom_point() + geom_abline(intercept = 0, slope = 1, color = "cornflowerblue") |
ggplot(iris_pred, # Drawing plot using ggplot2 aes(x = Pred_Values, y = Obs_Values)) + geom_point() + geom_abline(intercept = 0, slope = 1, color = "cornflowerblue")