Substitute Empty Cells by NaN in pandas DataFrame in Python (Example Code)
This article illustrates how to replace empty cells in a pandas DataFrame by NaNs in the Python programming language.
Preparing the Example
import pandas as pd # Load pandas library |
import pandas as pd # Load pandas library
my_df = pd.DataFrame({'A':[5,' ', 5, ' ', 5, 5], # Construct example DataFrame in Python 'B':['x','y', 'z', '', 'x', 'y']}) print(my_df) # Display example DataFrame in console # A B # 0 5 x # 1 y # 2 5 z # 3 # 4 5 x # 5 5 y |
my_df = pd.DataFrame({'A':[5,' ', 5, ' ', 5, 5], # Construct example DataFrame in Python 'B':['x','y', 'z', '', 'x', 'y']}) print(my_df) # Display example DataFrame in console # A B # 0 5 x # 1 y # 2 5 z # 3 # 4 5 x # 5 5 y
Example: Replacing Empty Cells by NaN in pandas DataFrame in Python
my_df = my_df.replace(r'^s*$', float('NaN'), regex = True) # Exchanging blanks by NaN print(my_df) # Displaying updated DataFrame # A B # 0 5.0 x # 1 NaN y # 2 5.0 z # 3 NaN NaN # 4 5.0 x # 5 5.0 y |
my_df = my_df.replace(r'^s*$', float('NaN'), regex = True) # Exchanging blanks by NaN print(my_df) # Displaying updated DataFrame # A B # 0 5.0 x # 1 NaN y # 2 5.0 z # 3 NaN NaN # 4 5.0 x # 5 5.0 y