R Set Fixed Intercept in Linear Regression Model (Example Code)

In this R post you’ll learn how to define a known intercept in a linear regression model.

Example Data

data(iris)                                        # Load example data
head(iris)
#   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1          5.1         3.5          1.4         0.2  setosa
# 2          4.9         3.0          1.4         0.2  setosa
# 3          4.7         3.2          1.3         0.2  setosa
# 4          4.6         3.1          1.5         0.2  setosa
# 5          5.0         3.6          1.4         0.2  setosa
# 6          5.4         3.9          1.7         0.4  setosa
my_mod <- lm(Sepal.Length ~ Sepal.Width, iris)    # Estimating model with default intercept
summary(my_mod)
# Call:
# lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
# 
# Residuals:
#     Min      1Q  Median      3Q     Max 
# -1.5561 -0.6333 -0.1120  0.5579  2.2226 
# 
# Coefficients:
#             Estimate Std. Error t value Pr(>|t|)    
# (Intercept)   6.5262     0.4789   13.63   <2e-16 ***
# Sepal.Width  -0.2234     0.1551   -1.44    0.152    
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Residual standard error: 0.8251 on 148 degrees of freedom
# Multiple R-squared:  0.01382,	Adjusted R-squared:  0.007159 
# F-statistic: 2.074 on 1 and 148 DF,  p-value: 0.1519

Example: Set Fixed Intercept in Linear Regression Model

my_intercept <- 5                                 # Estimating model with fixed intercept
my_mod_fixed <- lm(I(Sepal.Length - my_intercept) ~ 0 + Sepal.Width, iris)
summary(my_mod_fixed)
# Call:
# lm(formula = I(Sepal.Length - my_intercept) ~ 0 + Sepal.Width, 
#     data = iris)
# 
# Residuals:
#      Min       1Q   Median       3Q      Max 
# -1.49788 -0.75825  0.05212  0.65371  2.00850 
# 
# Coefficients:
#             Estimate Std. Error t value Pr(>|t|)    
# Sepal.Width  0.26596    0.02248   11.83   <2e-16 ***
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Residual standard error: 0.8501 on 149 degrees of freedom
# Multiple R-squared:  0.4845,	Adjusted R-squared:  0.481 
# F-statistic:   140 on 1 and 149 DF,  p-value: < 2.2e-16

Related Articles

In addition, you could read the other tutorials of my website.

Leave a Reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.
You need to agree with the terms to proceed

Menu
Top