Convert Float Column to Integer Data Type in pandas DataFrame in Python (3 Examples)
In this Python tutorial you’ll learn how to transform a float column to the integer data type in a pandas DataFrame.
Preparing the Examples
import pandas as pd # Import pandas library to Python |
import pandas as pd # Import pandas library to Python
df = pd.DataFrame({'A':[4.1, 9, 12, 1, 7], # Constructing a pandas DataFrame 'B':[10.1, 9, 77, 22, 24], 'C':[35.1, 41, 41, 1, 13]}) print(df) # A B C # 0 4.1 10.1 35.1 # 1 9.0 9.0 41.0 # 2 12.0 77.0 41.0 # 3 1.0 22.0 1.0 # 4 7.0 24.0 13.0 |
df = pd.DataFrame({'A':[4.1, 9, 12, 1, 7], # Constructing a pandas DataFrame 'B':[10.1, 9, 77, 22, 24], 'C':[35.1, 41, 41, 1, 13]}) print(df) # A B C # 0 4.1 10.1 35.1 # 1 9.0 9.0 41.0 # 2 12.0 77.0 41.0 # 3 1.0 22.0 1.0 # 4 7.0 24.0 13.0
print(df.dtypes) # Printing the data types of all columns # A float64 # B float64 # C float64 # dtype: object |
print(df.dtypes) # Printing the data types of all columns # A float64 # B float64 # C float64 # dtype: object
Example 1: Transforming One Column of a pandas DataFrame from Float to Integer
df1 = df.copy() # Duplicate pandas DataFrame df1['A'] = df1['A'].astype(int) # Converting float to integer |
df1 = df.copy() # Duplicate pandas DataFrame df1['A'] = df1['A'].astype(int) # Converting float to integer
print(df1.dtypes) # Printing the data types of all columns # A int32 # B float64 # C float64 # dtype: object |
print(df1.dtypes) # Printing the data types of all columns # A int32 # B float64 # C float64 # dtype: object
Example 2: Transforming Multiple Columns of a pandas DataFrame from Float to Integer
df2 = df.copy() # Duplicate pandas DataFrame df2 = df2.astype({'A': int, 'C': int}) # Converting float to integer |
df2 = df.copy() # Duplicate pandas DataFrame df2 = df2.astype({'A': int, 'C': int}) # Converting float to integer
print(df2.dtypes) # Printing the data types of all columns # A int32 # B float64 # C int32 # dtype: object |
print(df2.dtypes) # Printing the data types of all columns # A int32 # B float64 # C int32 # dtype: object
Example 3: Transforming Each Column of a pandas DataFrame from Float to Integer
df3 = df.copy() # Duplicate pandas DataFrame df3 = df3.astype(int) # Converting float to integer |
df3 = df.copy() # Duplicate pandas DataFrame df3 = df3.astype(int) # Converting float to integer
print(df3.dtypes) # Printing the data types of all columns # A int32 # B int32 # C int32 # dtype: object |
print(df3.dtypes) # Printing the data types of all columns # A int32 # B int32 # C int32 # dtype: object
Further Resources & Related Articles
Below, you may find some further resources on topics such as groups and counting:
- Count Unique Elements in pandas DataFrame Column in Python
- Add Indices of pandas DataFrame as New Column in Python
- Drop Rows with NaN in pandas DataFrame Column in Python
- Order Rows of pandas DataFrame by Column in Python
- Count Distinct Values by Group of pandas DataFrame Column in Python
- Identify Column Indices in pandas DataFrame in Python